Abstract

The reaction of 1 equiv of the dimeric lithium salt of a new London dispersion effect donor ligand {Li(C6H2-2,4,6-Cy3)·OEt2}2 (Cy = cyclohexyl) with SnCl2 afforded the distannene {Sn(C6H2-2,4,6-Cy3)2}2 (1). The distannene remains dimeric in solution, as indicated by its room-temperature 119Sn NMR signal (δ = 361.3 ppm) and its electronic spectrum, which is invariant over the temperature range of -10 to 100 °C. The formation of the distannene, which has a short Sn-Sn distance of 2.7005(7) Å and greatly enhanced stability in solution compared to that of other distannenes, is due to increased interligand London dispersion (LD) attraction arising from multiple close approaches of ligand C-H moieties across the Sn-Sn bond. DFT-D4 calculations revealed a dispersion stabilization of dimer 1 of 38 kcal mol-1 and a dimerization free energy of ΔGdimer = -6 kcal mol-1. In contrast, the reaction of 2 equiv of the similarly shaped but less bulky, less hydrogen-rich Li(C6H2-2,4,6-Ph3)·(OEt2)2 with SnCl2 yielded the monomeric stannylene Sn(C6H2-2,4,6-Ph3)2 (2), which is unstable in solution at ambient temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call