Abstract

Using computational modeling, we analyze the fluid-driven motion of compliant particles over a rigid, saw-toothed surface. The particles are modeled as fluid-filled elastic shells and, thus, simulate ex vivo biological cells or polymeric microcapsules. Through the model, we demonstrate how the patterned surface and an oscillatory shear flow can be combined to produce a ratcheting motion, yielding a straightforward method for sorting these capsules by their relative stiffness. Since the approach exploits the capsule's inherent response to the substrate, it does not involve explicit measurement and assessment. Because the process utilizes an oscillatory shear, the sorting can be accomplished over a relatively short portion of the substrate. Due to these factors, this sorting mechanism can prove to be both efficient and relatively low-cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call