Abstract
Rheumatoid arthritis disease is a chronic auto-immune inflammatory disease that mainly causes synovial joint inflammation and cartilage destruction. The tumor necrosis factor-α (TNF-α) is a pivotal cytokine that plays an important role in rheumatoid arthritis. The treatments focusing on a single cytokine inhibition are clinically able to produce meaningful responses in only about half of the treated patients due to multiple cytokines involved in this disease. In the present study, a bispecific tandem single-chain variable fragment was designed in order to suppress both human tumor necrosis factor-α and interleukin-23 (IL23) as a potential therapeutic drug candidate for this disease. To do so, at first, eight bispecific tandem single-chain variable fragment models were built against tumor necrosis factor-α and interleukin-23 cytokines with different domain orders by the homology modeling, and then 50ns molecular dynamics simulation was performed for each one and then structural properties were exploited. The MD simulation results indicate the fact that the domains' order strongly affects tandem single-chain variable fragment properties, and in overall, the fragment VLAIL23+Linker+VHAIL23+linker+VLATNF+Linker +VHATNF +His6 (VL and VH are light and heavy chain variable fragments and AIL23 and ATNF are anti-interleukin 23 and anti-tumor necrosis factor-α, respectively, and His6 is the six histidine) not only separated antibody domains accurately but also had better stability and solvation free energy. Therefore, this structure can be considered as an effective potential drug for rheumatoid arthritis. It is expected that the findings of this research could shed a light on the treatment approaches of the rheumatoid arthritis disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.