Abstract
This paper presents a method to design a neural network for coin recognition by a genetic algorithm (GA). The GA specifies an architecture of neural network, but does not train the network. The back-propagation (BP) method trains the network. After training it by the BP, the GA varies the architecture of the network to fit the environment, which is to achieve a 100% recognition accuracy and to make the network small in size. The network reduced by the GA is further decreased by using the BP with forgetting of weight. The object of this paper is to design a smaller neural network for hardware implementation of coin recognition system. Results by computer simulation show the effectiveness of the method to variably rotated coin recognition problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.