Abstract

Black phosphorus (BP) is a type of 2D layered material with a direct bandgap that displays high carrier mobility and strong in-plane anisotropy; it also exhibits potential as a promising optoelectronic material for IR applications. In this paper, we propose a nearly perfect IR absorber composed of a metal film, a spacer with a monolayer BP inside, and a distributed Bragg reflector (DBR). The electric field is confined inside the resonator generated by the metal film and DBR, and the absorption can be enhanced up to nearly 100%, owing to the strong interaction of BP with the confined field. Our results show that the absorption performance of the proposed structure is not only critically dependent on the electron density but also relies on the position of the BP within the spacer. This dependence can be mitigated because the absorption peak wavelength can be tuned by adjusting the angle of the light and the parameters of the DBR. Moreover, the absorber can be served as a reflective linear polarizer based on the anisotropic absorption properties. Our work can be helpful in designing a narrow perfect absorber and polarization-sensitive devices for IR waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.