Abstract

Background and Objective: Conventional applied techniques used for detecting pathogenic microorganisms that generally are based on plating, serological and biochemical assays are unreliable and expensive while lacking sensitivity and specificity compared to new analytical methods. Investigation of reliable and rapid analytical diagnosis methods seems a necessity today. In the present study, a high accurate method was developed aiming to pre-concentrate and improve identification of Staphylococcus aureus as a major bacterial human pathogen by using a molecular imprinted polymer (MIP) based membrane. Materials and Methods: Cellulose acetate was used as the basic membrane with a pore size of 1.2 μm, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer, antibody buffer medium as the template molecule, and 2,2'-Azobis(2-methylpropionitrile) as the initiator agent. After selecting the best membrane composition resulting from the optimum ratio of antibody to imprinted monomer, electron microscopy testing was used to evaluate the characterization and stabilization of the molecular imprinting of templates on the membrane. Results and Conclusion: According to the results, the suspension of Staphylococcus aureus with a dilution of 3×105 after being adjacent to MIPs modified membranes had the highest bacterial mass absorption in MIP4 filter and reduced to a level of 1.3×104. The manufactured nano membrane could lead to a significant development in quality control of food industry compared to traditional methods due to a very shorter required time of bacterial mass diagnosis with a very higher accuracy. Keywords: Antibody; Molecular Imprinted Polymer; Nano Membrane; Staphylococcus aureus

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call