Abstract

In this work, a calorimetric system based on two graphite cores for absorbed dose measurements is described. The calorimeter also serves to correct the non-proportional (quenched) response in densely ionizing beams observed in scintillators. The system is designed for high-intensity scanning proton beams, where the deposition of each spot can be monitored by a fibre-coupled plastic scintillation detector (PSD). The graphite core can be replaced by a hollow replica of the core accommodating the PSD, in principle allowing the quenched PSD response to be corrected relative to the small graphite core under nominally identical radiation conditions. This work focuses on the design of the calorimetric system to minimize the heat losses during irradiations. The operation of two graphite cores is demonstrated to be reproducible within <1%. Hence, the scintillator-calorimeter system is applicable for experimental scintillator quenching corrections in high-intensity ion beams where detectors as ionization chambers are insufficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.