Abstract
Stress uniformity within the gauge zone of a cruciform specimen significantly affects materials’ in-plane biaxial mechanical properties in material testing. The stress uniformity depends on the load transmission of the cruciform specimen from the fixtures to the gauge zone. Previous studies failed to alter the nature of the load transmission of the geometric features using parametric optimisations. To improve stress uniformity in the gauge zone, we optimised the cross-arms to design a centre-reduced cruciform specimen with topology and shape optimisations. The simulations show that the optimised specimen obtains significantly less stress variation and range in the gauge zone than the optimised specimen under different observed areas, directions, and load ratios of von Mises, S11, S22, and S12. In the quantified gauge zone, a more uniform stress distribution could be generated by optimizing specimen geometry, whose value should be estimated indirectly each time through simulations. We found that topology and shape optimisations could markedly improve stress uniformity in the gauge zone, and stress concentration at the cross-arms intersection. We first optimised the cruciform specimen structure by combining topology and shape optimisations, which provided a cost-effective way to improve stress uniformity in the gauge zone and reduce stress concentration at the cross-arms intersection, helping obtain reliable data to perform large strains in the in-plane biaxial tensile test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.