Abstract

Viscosity is a crucial thermophysical feature of a substance that must be accurately determined before designing a system with nanofluid as the working fluid. In this study, the modern technique of committee machine intelligent system (CMIS) is used for establishing a predictive model for the relative viscosity of the water-based nanofluids. The model was developed by considering 1440 experimental data points of different types of water-based nanofluids containing Al2O3, SiC, SiO2, TiO2, CuO, nanodiamond, and Fe3O4 nanoparticles. The CMIS model combines three intelligent models including a multilayer perceptron (MLP) model trained with Levenberg-Marquardt (LM), an MLP model trained by Bayesian Regularization (BR) and a radial basis function (RBF) approach to estimate the relative viscosity of different water-based nanofluids. Statistical and graphical error criteria revealed that the CMIS technique successfully estimates the relative viscosity of all data points over the whole ranges of operational conditions with a mean absolute relative error of approximately 1.25%. According to their precision and performance, the established CMIS system provides the best performance, followed by the BR-MLP, LM-MLP, and RBF models. Moreover, the performance and estimation capability of the CMIS model was verified against 13 theoretical and empirical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call