Abstract

Current national and international regulations, along with growing environmental concerns, have deeply influenced the design of supply chain networks. These decisions stem from the fact that decision-makers try to design the supply chain network to align with their economic and environmental objectives. In this paper, a new closed-loop supply chain network with sales agency and customers is formulated. The proposed model has four echelons in the forward direction and five echelons in the backwards direction. The model not only considers several constraints from previous studies, but also addresses new constraints in order to better explore real-life problems that employ different transportation modes and that rely on sale agency centers. The objective function is to maximize the total profit. In addition, this study firstly considers distinct cluster of customers based on the product life cycle. These customers are utilized in different levels of the proposed network in order to purchase the final products, returned products, and recycled products. The structure of the model is based on linear mixed-integer programming, and the proposed model has been investigated through a case study regarding the manufacturing industry. To verify the model efficiency, a set of metaheuristics and hybrid algorithm are applied in various test problems along with a data from a real-world case study in a building construction industry. The findings of the proposed network illustrated that using the attributes of sale agency centers and clusters of customers both increase the problem total revenue and the number of the collected returned products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.