Abstract
AbstractSolar steam generation with thermal localization was recently proposed for highly efficient solar‐thermal desalination. However, to achieve high steam productivity with long term stability remains a critical challenge due to salt accumulation at the evaporation surface. Here, we designed a T‐shaped synthetic tree that could simultaneously achieve high steam productivity and salt collection with the structure characteristics of interfacial thermal evaporation, ambient energy harvesting and edge‐preferential crystallizing. Under 1 sun, the synthetic tree exhibited a steady water evaporation rate of 2.03 kg m−2 hours−1 over 60 hours, achieving solar thermal efficiency of 75%. Salt was continuously rejected at the edge of the evaporator with a steady collection rate of 59.879 g m−2 hours−1, which did not affect water evaporation. This new design principle to simultaneously harvest water and salt provides a new avenue for solar energy utilization.image
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.