Abstract

We demonstrate the use of a series of engineered, variable-length de novo polypeptides to discretely immobilize luminescent semiconductor nanocrystals or quantum dots (QDs) onto functional surfaces. The polypeptides express N-terminal dicysteine and C-terminal hexahistidine residues that flank a variable number (1, 3, 5, 7, 14, 21, 28, or 35) of core beta-strand repeats, with tyrosine, glutamic acid, histidine, and lysine residues located at the turns. Polypeptides have molecular weights ranging from 4 to 83 kDa and retain a rigid structure based on the antiparallel beta-sheet motif. We first use a series of dye-labeled polypeptides to test and characterize their self-assembly onto hydrophilic CdSe-ZnS QDs using fluorescence resonance energy transfer (FRET). Results indicate that peptides maintain their beta-sheet conformation after self-assembly onto the QD surfaces, regardless of their length. We then immobilize biotinylated derivatives of these polypeptides on a NeutrAvidin-functionalized substrate and use them to capture QDs via specific interactions between the peptides' polyhistidine residues and the nanocrystal surface. We found that each of the polypeptides was able to efficiently capture QDs, with a clear correlation between the density of the surface-tethered peptide and the capacity for nanocrystal capture. The versatility of this capture strategy is highlighted by the creation of a variety of one- and two-dimensional polypeptide-QD structures as well as a self-assembled surface-immobilized FRET-based nutrient sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call