Abstract

Polymers and peptides have recently been considered as promising materials for piezoelectric energy harvesting because of their biocompatibility and enormous design possibility. However, achieving significant output voltages while meeting environmental safety requirements, low cost, and easy fabrication remains a major challenge. Herein, lipidated pseudopeptide incorporated poly(vinylidene fluoride) (PVDF) composite films are fabricated. Adding lipidated pseudopeptide (BLHA) increases the electroactive phase content, reaching the maximum for the 2 wt% composite film. The composite film containing 2 wt% BLHA manifests the highest dielectric constant and remnant polarization (Pr ), among others. A piezoelectric energy harvesting device fabricated with this film generates open-circuit output voltages up to 23V, five times amplified output compared to pure PVDF. To the best of our knowledge, this material is superior among the peptide-based piezoelectric energy harvesters reported in the literature. The device is flexible, durable, low cost, and sensitive to high and low pressures. It can power up multiple liquid crystal display panels when pressed with a finger. The non-covalent interaction between BLHA and PVDF is the reason behind the composites' improved piezoelectric response. Density functional theory calculations also support this notion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.