Abstract

Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB have could also be applied to XB. However, there has been no report on an anionic, metallic XB acceptor, but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB theory is because common metal anions are reactive for XB donors. In view of this, two strategies are proposed for designing metallic acceptor-containing XB using ab initio calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al13- as the XB acceptor. The second strategy is to design a ligand-passivated/protected metal core that can maintain the negative charge; several exotic clusters, such as PtH5- , PtZnH5- , and PtMgH5- , are used as examples. Based on these two strategies, it is anticipated that more metallic acceptor-containing XBs will be discovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.