Abstract

Poly(N-isopropylacrylamide-acrylamide-methacrylic acid) [p(NIPa-AAm-Ma)] polymer microgels were prepared by free radical precipitation polymerization method. AgNPs were fabricated in the sieves of polymer network by chemical reduction using AgNO3 salt as a precursor of silver ions. Various techniques like dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared microscopy (FTIR), and UV-Visible spectroscopy were used for characterization of pure and composite microgels. The diameter of AgNPs fabricated in polymeric network was found to be in the range of 10-15 nm. Stimuli responsive behavior of hybrid microgels was same as that of pure microgels. Catalytic efficiency of the hybrid microgels was investigated by reducing 4-Nitroaniline (4-NA) into 4-Aminoaniline (4-AA) using NaBH4 as reducing agent under different conditions of temperature of the medium, concentration of reducing agent, 4-Nitroaniline and hybrid microgels to explore the catalysis process. Kinetic and thermodynamic aspects of reduction of 4-Nitroaniline in the presence of catalyst were also discussed on the basis of values of Arrhenius and Eyring parameters like pre-exponential factor, activation energy, enthalpy of activation and entropy of activation. Catalytic activity of the hybrid microgels was found to be thermally tunable in the temperature range of 25-70 oC. The value of rate constant (k app ) for reduction of 4-NA was minimum at 55 °C, which can be attributed to volume phase transition of the hybrid microgels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call