Abstract

Multifunctional lignin-based adsorbents, which have shown great application prospect, have attracted widespread attention. Herein, a series of multifunctional lignin-based magnetic recyclable adsorbents were prepared from carboxymethylated lignin (CL), which was rich in carboxyl group (-COOH). After optimizing the mass ratio of CL to Fe3O4, the prepared CL/Fe3O4 (3:1) adsorbent showed efficient adsorption capacities for heavy metal ions. The kinetic and isotherm nonlinear fitting studies revealed that the adsorption process followed the second-order kinetic and Langmuir models, and the maximum adsorption capacities (Qmax) of CL/Fe3O4 (3:1) magnetic recyclable adsorbent for Pb2+, Cu2+ and Ni2+ ions reached 189.85, 124.43 and 106.97 mg/g, respectively. Meanwhile, after 6 cycles, the adsorption capacities of CL/Fe3O4 (3:1) for Pb2+, Cu2+ and Ni2+ ions could keep at 87.4 %, 83.4 % and 82.3 %, respectively. In addition, CL/Fe3O4 (3:1) also exhibited excellent electromagnetic wave absorption (EMWA) performance with a reflection loss (RL) of −28.65 dB at 6.96 GHz under the thickness of 4.5 mm, and its effective absorption bandwidth (EAB) achieved 2.24 GHz (6.08–8.32 GHz). In short, the prepared multifunctional CL/Fe3O4 (3:1) magnetic recyclable adsorbent with outstanding adsorption capacity for heavy metal ions and superior EMWA capability opens a new avenue for the diversified utilization of lignin and lignin-based adsorbent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call