Abstract
In this work, a facile one-step solvothermal method with the assistance of hydrochloric acid has been developed to prepare well-dispersed CeO2 hollow nanospheres with high surface areas. The effects of hydrochloric acid on the growth mechanism and the size distribution are investigated in detail. It is found that the hydrogen ions expedite the nucleation rate of the CeO2 nuclei in the nucleation course, while the chloride ions accelerate the Ostwald ripening in the acidic environment. Both the hydrogen ion (H+) and the chloride ion (Cl−) are confirmed to play a key role in the formation of hollow morphology. Based on our experiments, a HCl-assisted oxidation–nucleation with an Ostwald ripening process mechanism was proposed. Furthermore, Au nanoparticles with a size of 2.5–6 nm were uniformly deposited on the surface of the ceria support by a simplified reduction process with sodium borohydride (NaBH4). The synthesized Au/CeO2 nanospheres exhibit a higher catalytic activity in CO oxidation than pure ceria nanospheres due to the existence of different Au species (metallic Au0 and positively charged Auδ+) and the strengthened interfacial interactions between the Au NPs and the ceria support.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.