Abstract

Targeted drug delivery and controlled drug release can be obtained using specifically designed polymers as carriers. Due to their biocompatibility and biodegradability and especially the lack of an immune response, materials made of spider silk proteins are promising candidates for use in such applications. Particles made of recombinant spider silk proteins have previously been shown to be suitable drug and gene carriers as they could readily be loaded with various drug substances or biologicals, and subsequent release was observed over a defined period of time. However, the respective substances were bound non-covalently via hydrophobic or charge-charge interactions, and hence, the release of loaded substances could not be spatio-temporally controlled. Here, we present a setup of chemically modified recombinant spider silk protein eADF4 and variants thereof, combining their well-established biocompatible properties with covalent drug binding and triggered release upon changes in the pH or redox state, respectively. The usefulness of the spider silk platform technology was shown with model substances and cytostatic drugs bound to spider silk particles or films via a pH-labile hydrazine linker as one option, and the drugs could be released from the spider silk carriers upon acidification of the environment as seen, e.g., in tumorous tissues or endo/lysosomes. Sulfhydryl-bearing spider silk variants allowed model substance release if exposed to intracellular GSH (glutathione) levels as a second coupling option. The combination of non-immunogenic, nontoxic spider silk materials as drug carriers with precisely triggerable release chemistry presents a platform technology for a wide range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call