Abstract

Semisynthetic, mechanism-based protein inhibitors of ubiquitin (Ub) and ubiquitin-like modifier (Ubl) activating enzymes (E1s) have been developed to target E1-catalyzed adenylation and thioesterification of the Ub/Ubl C-terminus during the processes of protein SUMOylation and ubiquitination. The inhibitors were generated by intein-mediated expressed protein ligation using a truncated Ub/Ubl protein (SUMO residues 1-94; Ub residues 1-71) with a C-terminal thioester and synthetic tripeptides having a C-terminal adenosine analogue and an N-terminal cysteine residue. SUMO-AMSN (4a) and Ub-AMSN (4b) contain a sulfamide group as a nonhydrolyzable mimic of the phosphate group in the cognate Ub/Ubl-AMP adenylate intermediate in the first half-reaction, and these constructs selectively inhibit SUMO E1 and Ub E1, respectively, in a dose-dependent manner. SUMO-AVSN (5a) and Ub-AVSN (5b) contain an electrophilic vinyl sulfonamide designed to trap the incoming E1 cysteine nucleophile (Uba2 Cys173 in SUMO E1; Uba1 Cys593 in Ub E1) in the second half-reaction, and these constructs selectively, covalently, and stably cross-link to SUMO E1 and Ub E1, respectively, in a cysteine nucleophile-dependent manner. These inhibitors are powerful tools to probe outstanding mechanistic questions in E1 function and can also be used to study the biological functions of E1 enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call