Abstract

Suppressing side reactions at the cathode-electrolyte interface (CEI) is critical for alleviating capacity fading of the high-voltage (>5 V) spinel cathode material LiNi0.5Mn1.5O4 (LNMO). The primary bottleneck in conventional nanoengineering of LNMO involves an antagonistic relationship between the positive effects of the nanometer particle size and negative effects stemming from the larger CEI area. Inspired by Buckminster Fuller's geodesic domes, we have designed a seamless LNMO hollow sphere (S-LNMO) that comprises average 120 nm-sized triangles and truncated triangle subunits by means of grain growth orientation. The “tensegrity” structure has efficiently hindered the interfacial side reaction, which occurs only within a depth of 5 nm from the surface, thereby improving its electrochemical stability. The embedded layered Li2TiO3 (LTO) in bulk S-LNMO (LTO:S-LNMO) region further improved the high-rate performance, demonstrating an ∼110 mAh/g capacity with 80.9% retention after 400 cycles at 5 C and remaining stable after 900 cycles at 5 C even after being stored at 50 °C for one week.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call