Abstract

In interfacial fracture modeling of composite delamination, mode mix is typically specified in terms of energy release rates. Other near-tip quantities can be used to designate mode mix, however. This paper considers the designation of mode mix in terms of energy release rates, stress intensity factors, stresses ahead of the crack tip and crack face displacements and the consequences of using different near-crack-tip quantities to designate mode mix in analyzing composite delamination. The problem addressed is two-dimensional debonding between plies or ply groups modeled as in-plane orthotropic materials; however, the conclusions discussed apply to general composite delamination problems. It is shown that use of different quantities to designate mode mix can give significantly different results in matching composite applications to mixed-mode toughness tests. For cases where measured interfacial toughness increases with increasing mode II deformation, it is demonstrated that use of a mode mix designation based on energy release rates could be non-conservative. Based on these findings, it is suggested that practitioners consider the differences in failure load predictions that would result if different near-tip quantities were used to relate composite applications to measured toughnesses. To this end, methods for converting mode mix designations in terms of energy release rates into designations in terms of other fracture quantities are outlined and applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.