Abstract

Accretionary complex histories are broadly understood. Sedimentation in seafloor and trench environments on drifting subducting plates and in associated trenches, followed by (1) deformation and metamorphism in the subduction zone and (2) subsequent uplift at the overriding plate edge, result in complicated stratigraphic and structural sequences in accretionary complexes. Recognizing, defining, and designating individual terranes in subduction complexes clarify some of these complicated relationships within the resulting continent-scale orogenic belts. Terrane designation does not substitute for detailed stratigraphic and structural mapping. Stratigraphic and structural mapping, combined with radiometric and palaeontologic dating, are necessary for delineation of coherent, broken, and dismembered formations, and various mélange units, and for clarification of the details of subduction complex architecture and history. The Franciscan Complex is a representative subduction complex that has evolved through sedimentation, faulting, folding, and low-temperature metamorphism, followed by uplift, associated deformation, and later overprinted deformation. Many belts of Franciscan rocks are offset by strike-slip faults associated with the dextral San Andreas Fault System. In the Franciscan Complex, among the terrane names applied widely, are the ‘Yolla Bolly Terrane’ and the ‘Central Terrane’. Where detailed mapping and detrital zircon ages exist, data reveal that the two names have been applied to rocks of similar general character and age. In the northeastern Diablo Range, Franciscan Complex rocks include coherent units, broken and dismembered formations, and various types of mélanges, all assigned at various times to the Yolla Bolly and other terranes. The details of stratigraphic and structural history revealed by large-scale mapping and radiometric dating prove to be more useful in clarifying the accretionary complex history than assigning a terrane name to the rocks. That history will assist in resolving terrane assignment issues and allow discrimination of subduction-associated and post-subduction events, essential for understanding the overall history of the orogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call