Abstract

Facing the increasingly serious electromagnetic radiation, synthesis of graphene-containing microwave absorber with strong reflection loss (RL) and broad effective absorption bandwidth (EAB) have attracted tremendous interest due to their potential application in various areas. Herein, CoFe2O4@rGO hybrid nanocomposites composed of reduced graphene oxide (rGO) and embedded CoFe2O4 nanospheres were synthesized through an one-step solvothermal strategy. Enhanced microwave absorption properties of the nanocomposites with different CoFe2O4 nanospheres contents were investigated systematically, the RL value as well as the corresponding EAB could be effectively tuned by adjusting the filler contents of CoFe2O4@rGO hybrid nanocomposites. Remarkably, the minimal RL value of −67.58 dB accompanying with the corresponding EAB of 6.3 GHz (almost covering the whole Ku band) and the minimal RL value of −55.70 dB accompanying with the EAB of 4.0 GHz (almost covering the whole X band) can be achieved by the optimal sample with 10 wt% filler content at 2.1 mm and 2.7 mm matching thickness, respectively. The synergistic effect of impedance matching, hybrid microstructure together with various loss mechanisms are of crucial significance to enhance the absorption performances. The results suggest that the hybrid nanocomposites can serve as a promising lightweight and high-efficiency candidate absorber, and the simple synthesis technique gives a valuable clue for obtaining ideal microwave absorber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.