Abstract

Highly efficient recognition of cancer cells by immune cells is important for successful therapeutic-cell-based cancer immunotherapy. Herein, we present a facile NIR-II nanoadaptor [hyaluronic acid (HA)/dibenzocyclooctyne (DBCO)-Au:Ag2Te quantum dots (QDs)] for enhancing the tumor recognition and binding ability of natural killer (NK) cells via a bio-orthogonal click reaction in vivo. The Nanoadaptor possesses superior tumor-targeting capacity, facilitating the accumulation of the chemical receptor DBCO at the tumor sites. Subsequently, the enrichment of DBCO on tumor cell surfaces provides multivalent recognition sites for capturing pretreated azide engineered NK92 cells (NK92-N3) through an efficient click reaction, thereby significantly enhancing the therapeutical efficiency. The dynamic process of nanoadaptor-mediated recognition of NK cells to tumor cells could be vividly observed using multiplexed NIR-II fluorescence imaging in a mouse model of lung cancer. Such a nanoadaptor strategy can be extended to other therapeutic cellular systems and holds promise for future clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.