Abstract
High density oligonucleotide probe arrays have increasingly become an important tool in genomics studies. In organisms with incomplete genome sequence, one strategy for oligo probe design is to reduce the number of unique probes that target every non-redundant transcript through bioinformatic analysis and experimental testing. Here we adopted this strategy in making oligo probes for the earthworm Eisenia fetida, a species for which we have sequenced transcriptome-scale expressed sequence tags (ESTs). Our objectives were to identify unique transcripts as targets, to select an optimal and non-redundant oligo probe for each of these target ESTs, and to annotate the selected target sequences. We developed a streamlined and easy-to-follow approach to the design, validation and annotation of species-specific array probes. Four 244K-formatted oligo arrays were designed using eArray and were hybridized to a pooled E. fetida cRNA sample. We identified 63,541 probes with unsaturated signal intensities consistently above the background level. Target transcripts of these probes were annotated using several sequence alignment algorithms. Significant hits were obtained for 37,439 (59%) probed targets. We validated and made publicly available 63.5K oligo probes so the earthworm research community can use them to pursue ecological, toxicological, and other functional genomics questions. Our approach is efficient, cost-effective and robust because it (1) does not require a major genomics core facility; (2) allows new probes to be easily added and old probes modified or eliminated when new sequence information becomes available, (3) is not bioinformatics-intensive upfront but does provide opportunities for more in-depth annotation of biological functions for target genes; and (4) if desired, EST orthologs to the UniGene clusters of a reference genome can be identified and selected in order to improve the target gene specificity of designed probes. This approach is particularly applicable to organisms with a wealth of EST sequences but unfinished genome.
Highlights
DNA microarrays are widely used as a powerful tool for studying gene expression and regulation on a global scale and at high throughput [1] as well as for discovery of novel biomarker genes [2,3]
In phase 3, probes are designed for the unique target sequences, put together on test arrays, and RNA samples are hybridized to the arrays to test the probes
In phase 4, positive probes are identified on the basis of signal intensity of each probe on the test array, and the target sequences of all positive probes are annotated through bioinformatic data mining
Summary
DNA microarrays are widely used as a powerful tool for studying gene expression and regulation on a global scale and at high throughput [1] as well as for discovery of novel biomarker genes [2,3]. Recent development of ultra-high throughput DNA sequencing technologies such as Roche/454, Solexa/Illumina and ABI/SOLiD [11] has enabled de novo assembly of transcriptomes or genomes from millions of short sequence reads at a fraction of costs and time required by traditional technologies such as the Sanger capillary-array electrophoresis technology [12,13,14]. The industrialization of both microarray and ultra-high throughput sequencing technologies provides new opportunities to functional genomics research in environmentally relevant organisms like fish and earthworms at a modest cost without the need to run a core genomics facility [9,15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.