Abstract

In recent years, vibration energy harvesters have been widely studied to build self-powered wireless sensor networks for monitoring modern engineered systems. Although there has been significant research effort on different energy harvester configurations, the power output of a vibration energy harvester is known to be sensitive to various sources of uncertainties such as material properties, geometric tolerances, and operating conditions. This article proposes a reliability-based design optimization method to find an optimum design of energy harvester that satisfies the target reliability on power generation. This optimum design of vibration energy harvester demonstrates reliable power generation capability in the presence of the various sources of uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.