Abstract

The recent development of integrated Josephson circuits with increased complexity-e.g. RSFQ devices-invokes the need of a comprehensive computer-aided design support. The derivation of circuit parameters from layout data as well as an efficient and versatile simulation technique are essential means in the design and dimensioning of complex integrated structures. We present a comprehensive solution for calculating circuit parameters and simulating the device dynamics. The calculation of inductances and capacitances is performed by three-dimensional field computation using special developed programs which have been proven in high-T/sub c/ SQUID design. They can process layout information in standard graphic interchange formats (e.g. DXF). The netlists for device simulation can be generated automatically from the equivalent circuit schematic. Additionally, a technique for distributed simulation, which allows performing margins-and-yields-analyses in an efficient manner, was elaborated. The performance of the whole design tool set is demonstrated using basic RSFQ circuits.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.