Abstract

The basic parameters of an electromagnetic levitation systems are resistance of the coil, inductance of the coil, air-gap between magnet and the object, coil current, mass of the object, controller parameters and so on. The levitation systems are highly unstable and strongly non-linear. In real-life applications, these parameters are supposed to vary. A proportional–integral controller for the inner current control loop and a lead compensator for the position control loop have been designed and tested. The performance study under various parametric effects has been investigated broadly. Finally, both the stability for the proposed levitation system has been achieved with a better operating zone using linear state variable feedback controllers. The system dynamic performances have been recorded for variations of physical system parameters. The sensitivity/robustness of the set-up has been studied. This study will give an insight for designing any corrective measures and an overall idea to develop a levitation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call