Abstract
The current global energy crisis, emphasises the need to simultaneously reduce fossil energy consumption, accelerate renewable energy development, and mitigate global warming, which may arise from situations of dirtier fuel usage. Consequently, this work highlights how captured carbon dioxide from fossil power and manufacturing plants, together with hydrogen purportedly produced via water electrolysis (powered by residual energy from fossil and renewable power plants), can be used to synthesize methanol. Therefore, a methanol plant model was proposed and designed. Multivariable regressions for the plant model were developed and optimised. Furthermore, deduced optimal were used to develop a Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic equivalent to the Gibbs reaction model used in the simulation. Also, the plant cost analysis was performed at the optimal, and hydrogen cost was found to constitute the highest manufacturing cost component, hence the cost-determining factor of the plant. Finally, cost-to-size models for various cost components were also deduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.