Abstract

Compounds with more than one bioactive motif become of great interest. In this regard, a new tridentate 1,2-unsymmetrical ligand consists of flexible and rigid bioactive arms spaced by benzene ring in an ortho position designed to form a bifunctional molecule. The 2-((3-(pyridin-2-yl)-1H-pyrazol-1-yl)methyl)benzonitrile (PPMB) synthesized under phase transfer reaction and characterized using 1H-NMR and mass spectroscopy and studied as potent kinase inhibitors. Theoretically, the molecule structure was investigated at the B3LYP/6-311++G(d,p) level of theory in the gas phase and revealed that all bond lengths and bond angles within the accepted limit. The frontier molecular orbitals (FMO) energies (HOMO and LUMO), energy gap, dipole moment, chemical softness and chemical hardness were calculated. Pharmacologically, the ligand activity was investigated in silico using SWISS ADME. Furthermore, the compound was docked into the transforming growth factor (TGF) beta type I receptor kinase active site to evaluate the ability of ligand as a kinase inhibitor.
 Keywords: DFT, pyrazolyl-pyridine, physiochemical, properties molecular docking, bioactive molecules, unsymmetrical ligands

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call