Abstract
Objectives: The objective of this research work was to design, synthesize, study the molecular docking, and evaluate the antimicrobial activity of some novel substituted 2-(Phenylamino)-3-(1H-tetrazol-5-yl)-4H-chromen-4-one derivatives (12a-h).
 Methods: In the present work, 3-Formylchromones were transformed into pharmacologically active substituted 2-(Phenylamino)-3-(1H-tetrazol-5- yl)-4H-chromen-4-one derivatives (12a-h) through a multistep reaction. Initially, synthesis of the substituted 4-Oxo-2-(phenylamino)-4H-chromone-3- carbaldehydes (9a-h) was carried out using substituted acetophenones (6a-h) as starting material and by employing an earlier reported method (1,3-dipolar cycloaddition reaction). Then, these synthesized compounds were converted into respective oximes (10a-h).The obtained oximes (10a-h) were further converted into nitriles (11a-h) which were finally subjected to concerted cycloaddition through stepwise addition of neutral or anionic azide species to furnish final substituted 2-(Phenylamino)-3-(1H-tetrazol-5-yl)-4H-chromen-4-one derivatives (12a-h). All the newly synthesized compounds (12a-h) and a reference compound (ciprofloxacin) were docked into the active site of TyrRS (PDB: 1JIK) by means of the BioPredicta module of VLife MDS. The synthesized compounds (12a-h) were also evaluated in vitro for their antibacterial (against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli bacterial stains) and antifungal activities (against Aspergillus niger and Candida albicans fungal strains) using Zone of Inhibition method.
 Results: The formation of substituted 2-(Phenylamino)-3-(1H-tetrazol-5-yl)-4H-chromen-4-one derivatives (12a-h) was confirmed through their spectral analysis, that is, 1H-NMR, 13C-NMR, and Mass spectroscopy. During docking study, the recorded molecular binding interactions revealed that all the newly synthesized compounds (12a-h) interacted well with binding site of the enzyme. The synthesized compounds were also evaluated in vitro for their antibacterial (against S. aureus, B. subtilis, P. aeruginosa, and E. coli bacterial stains) and antifungal activities (against A. niger and C. albicans fungal strains). All the synthesized compounds exhibited moderate-to-potent antimicrobial activities.
 Conclusions: All the synthesized compounds exhibited moderate-to-potent antimicrobial activity.
Highlights
Chromones are the heterocyclic compounds demonstrating high degree of structural diversity
The results of synthetic work have revealed that maximum yield of compounds (12a-h) was obtained in the cases where chromone nucleus was bearing electron-withdrawing groups at C-6 or C-7
A good correlation was observed between the docking study and biological evaluation of active compound
Summary
Chromones are the heterocyclic compounds demonstrating high degree of structural diversity. They constitute the largest and most varied family of organic compounds [1]. They are known to display a remarkable spectrum of pharmacological activities, including antitumor [2], anti-inflammatory [3], antibacterial [4], antifungal [5], antioxidant [6], antiHIV [7], vasodilation [8], antiviral [9] and anti-allergic [10] activities, etc. 3-hydroxy-2-(1phenyl-3-aryl-4-pyrazolyl) chromones (3,4) show antifungal activity against three phytopathogenic fungi [11], namely, Helminthosporium species, Fusarium oxysporum, and Alternaria alternata. Chromones and bischromones (especially their 3-alkoxy derivatives) have proven themselves as interesting substrates to study the mechanism of photochemical reactions [14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Asian Journal of Pharmaceutical and Clinical Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.