Abstract

A general and sustainable approach for the synthesis of benzimidazole-thiazole compounds via an efficient, one-pot, domino, pseudo-four-component reaction using 5-amino-2-mercaptobenzimidazole, aralkyl halides, ammonium thiocyanate, and substituted α-bromo-acetophenones in glacial acetic acid at ambient temperature to give final compounds (4a-p) in good yields in shorter time. The spectral data of synthesized compounds were evaluated by analytical and spectral techniques (IR, 1H-NMR, 13C-NMR, and ESI-HRMS). Further, some of the synthesized compounds were screened for their in-vitro antibacterial activity studies using the agar well diffusion method against Gram-positive Streptococcus pneumoniae (2451) bacteria and Gram-negative Proteous mirabilis (2081) bacteria. Based on the MIC results, it was observed that the most active compounds 4b, 4e, 4f, and 4k show promising antibacterial activity with the zone of inhibition values of 2.85cm 2.75cm, 3.6cm, and 3.3cm against both Gram-negative and positive bacteria cell lines, respectively. Further, we have also insight into the molecular simulation studies, based on the binding results, compound 4i showed stable binding interactions with streptomycin drug with the active site of the gyrase protein (PDB ID: 1KIJ). The structure-activity relationship (SAR) studies of all the title scaffolds were also established. The antibacterial activity, molecular docking studies, and molecular dynamic simulations of the title compounds suggested that these are promising antibacterial active skeletons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call