Abstract

Dihydrofolate reductase (DHFR), an essential enzyme in folate metabolism, presents a promising target for drug development against various diseases, including cancer and tuberculosis. Herein, we present an integrated approach combining in vitro biochemical assays with in silico molecular docking analysis to evaluate the inhibitory potential of 4-piperidine-based thiosemicarbazones 5(a-s) against DHFR. In our in vitro study, a novel series of 4-piperidine-based thiosemicarbazones 5(a-s) were assessed for their inhibitory activity against DHFR enzyme. The synthesized compounds 5(a-s) exhibited potent inhibition with IC50 values in the range of 13.70 ± 0.25 µM to 47.30 ± 0.86 µM. Among all the derivatives 5p displayed highest inhibitory activity. Simultaneously, in silico analysis were performed and compared with standard drug (Methotrexate) to predict the binding affinity and interaction pattern of synthesized compounds with DHFR active site. SAR analysis was done to elucidate how structural modifications impact compound's biological activity, guiding the rational design of potent and selective drug candidates for targeted diseases. These findings may provide a comprehensive assessment of 4-piperdine-based thiosemicarbazones as DHFR inhibitors and contribute to the development of novel therapeutics targeting DHFR-associated diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.