Abstract

Recent studies have shown that monocarbonyl analogues of curcumin (MACs) and 1H-pyrazole heterocycle both demonstrated promising anticancer activities, in which several compounds containing these scaffolds could target EGFR. In this research, 24 curcumin analogues containing 1H-pyrazole (a1-f4) were synthesized and characterized by using modern spectroscopic techniques. Firstly, synthetic MACs were screened for cytotoxicity against human cancer cell lines such as SW480, MDA-MB-231 and A549, from which the 10 most potential cytotoxic compounds were identified and selected. Subsequently, the selected MACs were further screened for their inhibition against tyrosine kinases, which showed that a4 demonstrated the most significant inhibitory effects on EGFRWT and EGFRL858R. Based on the results, a4 further demonstrated its ability to cause morphological changes, to increase the percentage of apoptotic cells, and to increase caspase-3 activity, suggesting its apoptosis-inducing activity on SW480 cells. In addition, the effect of a4 on the SW480 cell cycle revealed its ability to arrest SW480 cells at G2/M phase. In subsequent computer-based assessments, a4 was predicted to possess several promising physicochemical, pharmacokinetic, and toxicological properties. Via molecular docking and molecular dynamics simulation, a reversible binding mode between a4 and EGFRWT, EGFRL858R, or EGFRG719S, remained stable within the 100-ns simulation due to effective interactions especially the hydrogen bonding with M793. Finally, free binding energy calculations suggested that a4 could inhibit the activity of EGFRG719S more effectively than other EGFR forms. In conclusion, our work would provide the basis for the future design of promising synthetic compounds as anticancer agents targeting EGFR tyrosine kinase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call