Abstract

Seven side chain-constrained bicyclic alpha-melanotropin (alpha-MSH) analogues were designed and synthesized, their conformations analyzed, and their biological properties examined in the frog skin and lizard skin bioassays. The structure of these analogues is based on the central sequence Ac-Cys4-Xaa5-His6-DPhe7-Arg8-Trp9-Cys10-Lys11 -NH2 (Xaa5 = Asp or Glu) and has been extended on the N-terminal with the amino acids Ser1-Tyr2-Ser3 and on the C-terminal with Pro12-Val13 to more closely resemble the native hormone alpha-MSH. The analogue Ac-Cys4-Asp5-His6-DPhe7-Arg8-Trp9-Lys10-Cys11 -NH2 also was synthesized, and its conformational and biological properties were examined. Design of these analogues was based upon the previously identified superpotent monocyclic peptides [Cys4,DPhe7,Cys10]alpha-MSH(4-10)-NH2 and [Nle4,Asp5,DPhe7,Lys10]alpha-MSH(4-10)-NH2 with the rationale of increasing conformational constraints to restrict the available backbone conformations as a means to identify the conformations that facilitate biological activity. Computer-assisted conformational analysis of the central tetrapeptide residues 6-9 identified beta-turns which varied with respect to the residue in the i + 1 position. Each highly constrained peptide contains D-Phe7 and a 23-membered ring which has previously been identified as crucial to produce prolonged acting peptides with superagonistic activities. The bicyclic peptides reported in this study are full agonists and are 25-400-fold less potent than alpha-MSH in the frog and lizard skin bioassays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call