Abstract
Diabetes mellitus is considered as one of the principal global health urgencies of the twenty first century. In the present investigation, novel N-substituted 2,4-thiazolidinedione derivatives were designed, synthesized, and characterized by spectral techniques. All the newly synthesized N-substituted 2,4-thiazolidinedione derivatives were tested for in vitro α-glucosidase inhibitory activities and compounds A-12 and A-14 were found to be the most potent which were further subjected to in-vivo disaccharide loading test. The most potent compound was also found to be non-toxic in cytotoxicity studies. Further, docking studies were carried out to investigate the binding mode and key interactions with amino acid residues of α-glucosidase. Molecular dynamic simulations studies for the compounds acarbose, A2, A12, and A14 were done with α-glucosidase protein. Further, ΔG was calculated for acarbose, A2, A12, and A14. In silico studies and absorption, distribution, metabolism, excretion (ADME) prediction studies were also executed to establish the ‘druggable’ pharmacokinetic profiles. Here, we have developed novel N-substituted TZD analogues with different alkyl groups as α-glucosidase inhibitors.Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.