Abstract

Based on the advantages of azole molecules and fluoroquinolone drugs, we designed and synthesized 34 clinafloxacin-azole conjugates using fragment-based drug design and drug combination principles. The in vitro activities of the synthesized conjugates against Mycobacterium tuberculosis (H37Rv), Hela cell as well as Gram-positive and Gram-negative bacteria were assayed. The bioassay results revealed that most of the target molecules had anti-tuberculosis (anti-TB) activity, of which 14 compounds had very strong anti-TB activity [minimum inhibitory concentration (MIC) < 2 μM]. In addition, the compounds with strong activity towards H37Rv had weak activity towards Gram-negative and Gram-positive bacteria, showing obvious selectivity towards H37Rv. Predicted toxicity data indicated that 27 molecules were less toxic or equivalent to that of the original drug (clinafloxacin). Especially, it is demonstrated that compound TM2l exhibited the strongest anti-TB activity (MIC = 0.29 μM), low antibacterial activity, negligible toxicity, and good drug-likeness values, which can be considered as an ideal lead molecule for future optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.