Abstract

In this paper the development of a smart imaging core following a SystemC-based design flow is presented. The smart imaging core integrates an ARM processor and two specific hardware blocks for image processing: a smart imaging coprocessor and a motion estimation coprocessor. A SystemC-based design flow is applied, comprising the design, synthesis and verification and synthesis of the two coprocessors, as well as the development and integration of the embedded software on the smart imaging core. The two coprocessors are successfully modeled and refined from C/C++-based algorithmic descriptions down to architecture reference models using SystemC and TLM concepts. For the RTL implementation of the coprocessor hardware high-level synthesis tools are used. The applied SystemC-based design flow enabled the iterative refinement of the architecture towards an optimal RTL implementation. Furthermore, the use of SystemC TLM supports the integration of fast functional models of the coprocessors on a virtual prototype platform of the target architecture. This virtual prototype is beneficially used during the embedded software development phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.