Abstract
Polyimide (PI) optical films with high glass transition temperatures (high-Tg), high optical transparency, and low optical retardations (low-Rth) are highly desired in advanced optoelectronic applications. However, the standard PI films usually suffer from deep colors, high optical anisotropies and limited Tg values. In the current work, a series of semi-alicyclic colorless and transparent PI (CPI) films were developed from hydrogenated pyromellitic dianhydride stereoisomers, 1S,2R,4S,5R-hydrogenated pyromellitic dianhydride and 1R,2S,4S,5R-hydrogenated pyromellitic dianhydride, and fluorene-containing diamines, including 9,9-bis(4-aminophenyl)fluorene and 9,9-bis(3-fluoro-4-aminophenyl)fluorene, respectively. The derived CPI films showed Tg values higher than 420 °C according to differential scanning calorimetry measurements. In addition, the fluorene-based CPI film showed optical transmittances higher than 80% at the wavelength of 400 nm, with yellow indices in the range of 0.60~1.01 and haze values below 3.0%. The CPI films showed average refractive indices from 1.5407 to 1.6309, extremely low birefringence at the level of minus fourth power of ten, and further exhibited quite low optical retardations below 10 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.