Abstract
A series of alkyl/aryl/heteroaryl piperazine derivatives (37–54) were designed and synthesized as potential anticonvulsant agents. The target compounds are endowed with satisfactory physicochemical as well as pharmacokinetic properties. The synthesized compounds were screened for their in vivo anticonvulsant activity in maximal electroshock (MES) and subcutaneous pentylenetetrazole (sc-PTZ) seizure tests. Further, neurotoxicity evaluation was carried out using rotarod method. Structure activity relationship studies showed that compounds possessing aromatic group at the piperazine ring displayed potent anticonvulsant activity. Majority of the compounds showed anti-MES activity whereas compounds 39, 41, 42, 43, 44, 50, 52, and 53 exhibited anticonvulsant activity in both seizure tests. All the compounds except 42, 46, 47, and 50 did not show neurotoxicity. The most active derivative, 45 demonstrated potent anticonvulsant activity in MES test at the dose of 30mg/kg (0.5h) and 100mg/kg (4h) and also delivered excellent protection in sc-PTZ test (100mg/kg) at both time intervals. Therefore, compound 45 was further assessed in PTZ-kindling model of epilepsy which is widely used model for studying epileptogenesis. This compound was effective in delaying onset of PTZ-evoked seizures at the dose of 5mg/kg in kindled animals and significantly reduced oxidative stress better than standard drug phenobarbital (PB). In result, compound 45 emerged as a most potent and safer anticonvulsant lead molecule.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.