Abstract

Eight derivatives of tetrahydropyrimidine scaffold were designed and prepared as hybrid compounds possessing the structural features of both monastrol as an anticancer drug and nifedipine as a fascin blocking agent. All of the compounds were evaluated for their cytotoxic potency and the ability to inhibit 4T1 breast cancer cells migration. Then, they were investigated in silico for their ability to inhibit the fascin protein using molecular docking simulation. The most potent compound was 4d and the weakest one was 4a according to the in vitro cytotoxicity assay. The corresponding IC50 values were 193.70 and 248.75 μm, respectively. The least cytotoxic compound (4a) was one of the strongest ones in binding to the fascin binding site according to the molecular docking results. 4a and 4e inhibited the 4T1 cells migration better than other compounds. They were more potent than nifedipine in inhibiting the migration process. In silico studies proved 4h to be the most potent fascin inhibitor in terms of ΔGbind although it was not inhibiting migration. The controversy between the in vitro and in silico results may cancel the theory of the involvement of the fascin inhibition in the migration inhibition. However, the considerable antimigratory effects of some of the synthesized compounds encourage performing further in vivo experiments to introduce novel tumor metastasis inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.