Abstract

Fall armyworm (Spodoptera frugiperda) is a major migratory pest around the entire world that causes severe damage to agriculture. We designed and synthesized a series of novel isoxazoline derivatives based on the previously discovered active compound H13 to find new and effective candidates against S. frugiperda. Most of them showed excellent insecticidal activity. In addition, a three-dimensional quantitative structure-activity relationship model was established, and compound F32 was designed and synthesized based on the results. The bioassay result showed that compound F32 exhibited excellent activity against S. frugiperda (LC50 = 3.46 mg/L), which was substantially better than that of the positive control fipronil (LC50 = 78.8 mg/L). Furthermore, an insect γ-aminobutyric acid (GABA) enzyme-linked immunosorbent assay indicated that F32 can upregulate the content of GABA in insects in a manner similar to that of fipronil. Molecular docking showed that the hydrophobic effect and hydrogen-bond interactions are vital factors between the binding of F32 and receptors. All of these results suggest that compound F32 could be employed as a novel isoxazoline lead compound to control S. frugiperda.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.