Abstract

Using rimonabant, a potent inverse agonist for cannabinoid receptor type 1 (CB1R), as parent ligand, a series of novel univalent and bivalent ligands were designed by variation of spacer length and its chemical structure. The ligands synthesized were evaluated for affinity and selectivity by radioligand displacement and a functional steady-state GTPase assay. The results showed the nature of the spacer influences the biological readout. Albeit all compounds show significantly lower affinities than rimonabant, this fact could be used to demonstrate that affinities and selectivity are influenced by the chemical structure and length of the spacer and might be helpful for designing bivalent probes for other GPCR receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.