Abstract

Lysine-specific demethylase 1 (LSD1) mainly removes methyl groups of mono- or di-methylated lysine residues at the fourth position of histone H3 to epigenetically regulate the expression of genes associated with several diseases, such as cancer. Therefore, LSD1 inactivators are expected to be used as therapeutic agents. In this study, to identify novel peptide-based LSD1 inactivators, we focused on the X-ray structure of LSD1 complexed with a H3 peptide-based suicide substrate. It has been proposed that a methylated histone substrate forms three consecutive γ-turn structures in the active pocket of LSD1. Based on this, we designed and synthesized novel histone H3 peptide-based LSD1 inactivators 2a–c by incorporating various α,α-disubstituted amino acids with γ-turn-inducing structures. Among synthetic peptides 2a–c, peptide 2b incorporating two 1-aminocyclohexanecarboxylic acids at both sides of a lysine residue bearing a trans-2-phenylcyclopropylamine (PCPA) moiety, which is a pharmacophore for LSD1 inactivation, was the most potent and selective LSD1 inactivator. These findings are useful for the further development of histone H3 peptide-based LSD1 inactivators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.