Abstract

Development of efficient non-viral carriers is one of the major challenges of gene delivery. In the current study, we designed, synthesized, and evaluated the in vitro gene delivery efficiency of novel amphiphilic constructs composed of cholesterol and low molecular weight protamine (LMWP: VSRRRRRRGGRRRR) peptide. Vectors having both hydrophobic and hydrophilic moieties were evaluated in terms of particle size and charge, DNA condensation ability, cytotoxicity, and gene transfection efficiency. The prepared vectors spontaneity self-assembled into the liposome-like particles with a high local positive density. The nano-vehicle A (H5-LMWP-Cholestrol) and nano-vehicle B (LMWP-Cholesterol) could form micelles at concentrations above 50μg/mL and 65μg/mL, respectively. The gel retardation assay showed that nano-vehicles A and B could condense pDNA more efficiently than the corresponding unconjugated peptides. The mean of size and zeta potential of complexed nano-vehicle A at N/P ratios of 5, 15, and 30 were 151nm and 23mv, and those of nano-vehicle B were 224nm and 19mv, respectively. In terms of transfection efficiency, the designed nano-vehicles showed almost two-fold higher gene expression level compared to PEI 25kDa at optimal N/P ratios, and also exhibited negligible cytotoxicity on a model cancer cell, Neuro 2a. The findings of the present study revealed that these cationic micelles can be promising candidates as non-viral gene delivery vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call