Abstract
Over the past decades, considerable efforts have been devoted to synthesizing nanostructured materials with specific properties that ultimately shape their function. In the carbon nanotechnology era, for nanomaterials such as fullerenes, carbon nanotubes, and graphene, the main focus has been on the organic functionalization of these nanostructures, in order to tailor their processability and applicability. Carbon-based dots, quasi-spherical nanoparticles with a shape under 10 nm, have popped up into this context especially due to their versatile synthesis and intriguing properties, mainly their fluorescence emission. Even though they were discovered through the top-down route of cutting large carbon nanostructures, in recent years the ease and flexibility of the bottom-up synthesis have allowed this carbon-based class of nanomaterials to advance at a striking pace. However, the fast speed of research and publication rate have caused a few issues that affect their classification, purity criteria, and fluorescence mechanisms. As these are being progressively addressed, the true potential and applicability of this nanomaterial has started to unravel. In this Ariticle, we describe our efforts toward the synthesis, purification, characterization, and applications of carbon nanodots. Special attention was dedicated to designing and customizing the optoelectronic properties of these nanomaterials, as well as their applications in hybrid and composite systems. Our approach is centered on a bottom-up, microwave-assisted hydrothermal synthesis. We have successfully exploited a multicomponent synthetic approach, using arginine and ethylenediamine as starting materials. By controlling the reaction conditions, in just 3 min, blue-emitting carbon nanodots become accessible. We have improved this approach by designing and tuning the emissive, electrochemical, and chiroptical properties of these nanoforms. On the other hand, we have used postfunctionalization reactions as a tool for conjugation with suitable partners and for further tuning the surface chemistry. The combination of these two approaches has produced a number of carbon nanodots that can be investigated in fields ranging from biology to materials chemistry and in applications spanning from nanomedicine to energy conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.