Abstract

Through the use of the cluster-plus-glue atom model, we theoretically designed a novel perovskite-structured oxide (ABO3), derived from a barium cerate/zirconate, with the following chemical formula: Ba(Ce0.2Zr0.2Gd0.2La0.2Y0.2)O2.7. Given the five different cations on the B-site, we demonstrated that the novel system is an Entropy-Stabilized Perovskite Oxide, which exhibits a reversible transition from a single-phase to a multiphase system. By using a simple coprecipitation process, we were able to synthesize and then sinter a well-densified single-phase perovskite. In the present work, we discussed for the first time the complex interactions occurring among the involved species that, depending on the treatment conditions, could lead to the formation of either an entropy-stabilized orthorhombic perovskite or a metastable cubic perovskite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call