Abstract
Neurotensin (NT) and its active fragment NT(8–13) elicit behavioral responses typical of clinically used antipsychotic drugs when administered directly to the brain. However, limited peptide stability and oral bioavailability have prevented these compounds from being developed as relevant pharmaceuticals. Recently, our laboratory designed and studied a first-generation NT(8–13) derivative, KK13, that elicited key pharmacokinetic and behavioral responses typical of clinically used antipsychotic drugs when administered to rats parenterally. This compound was the basis for the rational design of a series of second-generation NT(8–13) analogues (KH1–KH30) studied in this paper. Initial screening of these analogues for CNS activity by monitoring hypothermia induction after peripheral administration defined several compounds (KH11, KH24, KH26, and KH28–KH30) that warranted further investigation. Each compound maintained binding affinity for NTR 1, however, only KH24, KH26, and KH28 (as well as KK13) elicited significant hypothermic responses after oral administration. Of these, KH28 demonstrated an oral activity 3-fold greater than any other analogue; hence it was further characterized in a series of rat behavioral assays. KH28 attenuated d-amphetamine induced hyperlocomotion, a hallmark of current clinically effective antipsychotic drugs, after both IP and oral administration. In addition, tolerance to the compound did not develop after repeated daily dosing, as measured by hypothermic induction as well as attenuation of d-amphetamine induced hyperlocomotion. Finally, KH28 did not produce catalepsy, a deleterious side-effect elicited by classical antipsychotic drugs. KH28 is considered to be an ideal compound for further development as a potential novel antipsychotic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.