Abstract

5′-Methylthioadenosine (MTA) is a natural substrate of MTA phosphorylase (MTAP) and is converted to adenine via a salvage pathway for AMP production in normal healthy cells. The lack of MTAP expression in many solid tumors and hematologic malignancies compared to normal healthy cells has been explored in a potential therapeutic strategy to selectively target tumor cells using antimetabolites such as 5-fluorouracil (5-FU) and 6-thioguanine (6-TG) while protecting normal healthy cells with MTA. Herein, a series of carbamate prodrugs, namely the N-(alkyloxy)carbonyl-MTA derivatives 2a-f, was designed, synthesized, and evaluated as potential prodrugs of MTA. All carbamate prodrugs were stable in phosphate buffer, pH 7.4 at 37 °C. In the presence of mouse liver microsomes, the prodrugs were converted to MTA at varying rates with the hexyl and butyl carbamates 2a and 2b most readily activated (t1/2 of 1.2 and 9.4 h, respectively). The activation was shown to be mediated by carboxyesterases present in mouse liver microsomes.

Highlights

  • 5′-Methylthioadenosine (MTA) is a natural substrate of MTA phosphorylase (MTAP) and is converted to adenine via a salvage pathway for adenosine monophosphate (AMP) production in normal healthy cells

  • The lack of MTAP expression in many solid tumors and hematologic malignancies compared to normal healthy cells has been explored in a potential therapeutic strategy to selectively target tumor cells using antimetabolites such as 5fluorouracil (5-FU) and 6-thioguanine (6-TG) while protecting normal healthy cells with MTA

  • AMP may be produced in cells by de novo purine biosynthesis, MTAP is responsible for the generation of essentially all free adenine in normal healthy cells [4]

Read more

Summary

Introduction

5′-Methylthioadenosine (MTA) is a natural substrate of MTA phosphorylase (MTAP) and is converted to adenine via a salvage pathway for AMP production in normal healthy cells. In the presence of mouse liver microsomes, the prodrugs were converted to MTA at varying rates with the hexyl and butyl carbamates 2a and 2b most readily activated (t1/2 of 1.2 and 9.4 h, respectively).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.