Abstract

We are targeting molecules to the RNA/DNA heteroduplex that forms during the enzyme telomerase’s catalytic cycle. Telomerase is a potential universal anti-cancer target that we have previously shown can be inhibited by molecules that target this heteroduplex. The aim of this work was to make derivatives of our lead, ethidium, that would allow its straightforward incorporation into molecules in both solid and solution phase. The heteroduplex targeting intercalator will act as a scaffold to allow the incorporation of new functionalities that will interact with specific protein surfaces of telomerase, thereby potentially increasing affinity and specificity. In examining multiple new derivatives of ethidium, with literature precedent or novel, we have identified one, a 5-benzylic acid ethidium derivative that is synthesized in three steps as a single isomer, and completely retains the inhibition efficacy of the parent compound. Furthermore, we have demonstrated that it can be effectively incorporated into resin bound amines on the solid phase. As such it represents an ideal monomer for the exploration of telomerse inhibition or for other applications which would benefit from hybrid molecules that can target duplexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.